There exist many ways to stabilize an infinite-dimensional linear autonomous control systems when it is possible. Anyway, finding an exponentially stabilizing feedback control that is as simple as possible may be a challenge. The Riccati theory provides a nice feedback control but may be computationally demanding when considering a discretization scheme. Proper Orthogonal Decomposition (POD) offers a popular way to reduce large-dimensional systems. In the present paper, we establish that, under appropriate spectral assumptions, an exponentially stabilizing feedback Riccati control designed from a POD finite-dimensional approximation of the system stabilizes as well the infinite-dimensional control system.
1月9日
3:00pm - 4:00pm
地點
Room 4502, Academic Building (Lifts 25-26)
講者/表演者
Prof. Gengsheng WANG
Tianjin University
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.com
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...