There exist many ways to stabilize an infinite-dimensional linear autonomous control systems when it is possible. Anyway, finding an exponentially stabilizing feedback control that is as simple as possible may be a challenge. The Riccati theory provides a nice feedback control but may be computationally demanding when considering a discretization scheme. Proper Orthogonal Decomposition (POD) offers a popular way to reduce large-dimensional systems. In the present paper, we establish that, under appropriate spectral assumptions, an exponentially stabilizing feedback Riccati control designed from a POD finite-dimensional approximation of the system stabilizes as well the infinite-dimensional control system.
9 Jan 2020
3:00pm - 4:00pm
Where
Room 4502, Academic Building (Lifts 25-26)
Speakers/Performers
Prof. Gengsheng WANG
Tianjin University
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.com
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
10 Oct 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
14 Jul 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...