In this talk, I will first introduce the mirror symmetry for Calabi-Yau threefolds, which describes the genus zero structures of the Gromow-Witten theory. Then I will talk about the Feynman rule developed by Bershadsky-Cecotti-Ooguri-Vafa, which determines the higher genus structures.  Such a conjectural Feynman rule was proved for the quintic threefolds case, by Huai Liang Chang, Jun Li, Weiping Li and myself. We will consider its generalization in this talk.

4月28日
10:30am - 11:30am
地點
https://hkust.zoom.us/j/9584764665 (Passcode: 2021)
講者/表演者
Prof. Shuai GUO
Beijing University
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, HKUST Family, PG students
語言
英語
其他活動
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...