We discuss Donaldson-Thomas (DT) invariants of torsion sheaves with 2 dimensional support on a smooth projective surface in an ambient non-compact Calabi Yau fourfold given by the total space of a rank 2 bundle on the surface. We prove that in certain cases, when the rank 2 bundle is chosen appropriately, the universal truncated Atiyah class of these codimension 2 sheaves reduces to one, defined over the moduli space of such sheaves realized as torsion codimension 1 sheaves in a noncompact divisor (threefold) embedded in the ambient fourfold. Such reduction property of universal Atiyah class enables us to relate our fourfold DT theory to a reduced DT theory of a threefold and subsequently then to the moduli spaces of sheaves on the base surface. We finally make predictions about modularity of such fourfold invariants when the base surface is an elliptic K3. 

11月7日
4:00pm - 5:00pm
地點
Room 5501 (Lifts 25/26)
講者/表演者
Prof. Artan SHESHMANI
Tsinghua University/ Harvard University
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
5月15日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
3月24日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...