We discuss Donaldson-Thomas (DT) invariants of torsion sheaves with 2 dimensional support on a smooth projective surface in an ambient non-compact Calabi Yau fourfold given by the total space of a rank 2 bundle on the surface. We prove that in certain cases, when the rank 2 bundle is chosen appropriately, the universal truncated Atiyah class of these codimension 2 sheaves reduces to one, defined over the moduli space of such sheaves realized as torsion codimension 1 sheaves in a noncompact divisor (threefold) embedded in the ambient fourfold. Such reduction property of universal Atiyah class enables us to relate our fourfold DT theory to a reduced DT theory of a threefold and subsequently then to the moduli spaces of sheaves on the base surface. We finally make predictions about modularity of such fourfold invariants when the base surface is an elliptic K3. 

7 Nov 2022
4:00pm - 5:00pm
Where
Room 5501 (Lifts 25/26)
Speakers/Performers
Prof. Artan SHESHMANI
Tsinghua University/ Harvard University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...