The aggregation-diffusion equation is a nonlocal PDE that arises in the collective motion of cells. Mathematically, it is driven by two competing effects: local repulsion modeled by nonlinear diffusion, and long-range attraction modeled by nonlocal interaction. In this talk, I will discuss several qualitative properties of its steady states and dynamical solutions.



 



Using continuous Steiner symmetrization techniques, we show that all steady states are radially symmetric up to a translation. (joint work with Carrillo, Hittmeir and Volzone). In a recent work, we further investigate whether they are unique within the radial class, and show that for a given mass, uniqueness/non-uniqueness of steady states are determined by the power of the degenerate diffusion, with the critical power being m = 2. (joint work with Delgadino and Yan.)

9月24日
9:00am - 10:00am
地点
https://hkust.zoom.us/j/91948451738 (Passcode: 774559)
讲者/表演者
Prof. Yao YAO
National University of Singapore
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...