The aggregation-diffusion equation is a nonlocal PDE that arises in the collective motion of cells. Mathematically, it is driven by two competing effects: local repulsion modeled by nonlinear diffusion, and long-range attraction modeled by nonlocal interaction. In this talk, I will discuss several qualitative properties of its steady states and dynamical solutions.



 



Using continuous Steiner symmetrization techniques, we show that all steady states are radially symmetric up to a translation. (joint work with Carrillo, Hittmeir and Volzone). In a recent work, we further investigate whether they are unique within the radial class, and show that for a given mass, uniqueness/non-uniqueness of steady states are determined by the power of the degenerate diffusion, with the critical power being m = 2. (joint work with Delgadino and Yan.)

24 Sep 2021
9:00am - 10:00am
Where
https://hkust.zoom.us/j/91948451738 (Passcode: 774559)
Speakers/Performers
Prof. Yao YAO
National University of Singapore
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...
10 Oct 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...