Approximate Message Passing (AMP) algorithms have seen widespread use across a variety of applications. The Onsager corrections and state evolutions of these algorithms are closely tailored to the distribution of the input data, with the most common versions of AMP designed for matrices having i.i.d. entries. In this talk, I will describe an extended AMP algorithm that admits an exact state evolution characterization for a more general class of matrices which are orthogonally invariant in law, but which can have arbitrary spectral distribution. The forms of the Onsager corrections and state evolution are defined by the free cumulants of this spectral distribution. I will discuss applications of this algorithm to statistical Principal Components Analysis with a Bayesian prior, and to the analysis of spin glass models with orthogonally invariant couplings.



 



This is joint work with Xinyi Zhong, Tianhao Wang, and Yihong Wu.

10月8日
10:00am - 11:00am
地点
https://hkust.zoom.us/j/99036074373 (Passcode: 841388)
讲者/表演者
Prof. Zhou FAN
Yale University
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
3月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...