In this talk, I will first introduce the mirror symmetry for Calabi-Yau threefolds, which describes the genus zero structures of the Gromow-Witten theory. Then I will talk about the Feynman rule developed by Bershadsky-Cecotti-Ooguri-Vafa, which determines the higher genus structures. Such a conjectural Feynman rule was proved for the quintic threefolds case, by Huai Liang Chang, Jun Li, Weiping Li and myself. We will consider its generalization in this talk.
4月28日
10:30am - 11:30am

地点
https://hkust.zoom.us/j/9584764665 (Passcode: 2021)
讲者/表演者
Prof. Shuai GUO
Beijing University
Beijing University
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, HKUST Family, PG students
语言
英语
其他活动

3月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract
Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...

11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...