In this talk, I will first introduce the mirror symmetry for Calabi-Yau threefolds, which describes the genus zero structures of the Gromow-Witten theory. Then I will talk about the Feynman rule developed by Bershadsky-Cecotti-Ooguri-Vafa, which determines the higher genus structures.  Such a conjectural Feynman rule was proved for the quintic threefolds case, by Huai Liang Chang, Jun Li, Weiping Li and myself. We will consider its generalization in this talk.

4月28日
10:30am - 11:30am
地点
https://hkust.zoom.us/j/9584764665 (Passcode: 2021)
讲者/表演者
Prof. Shuai GUO
Beijing University
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, HKUST Family, PG students
语言
英语
其他活动
1月20日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his stud...
1月6日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...