Deep generative models are a category of machine learning models that utilizes deep neural networks to model data distributions and generate new samples. In this seminar, we first introduce our proposed framework to learn a generative model via Schrödinger Bridge, as a stochastic differential equation (SDE)-based generative model. The generative learning task can be formulated as interpolating between a reference distribution and a target distribution based on the Kullback-Leibler divergence, which can be characterized via an SDE on [0, 1] with a time-varying drift term. However, although SDE-based generative models have achieved state-of-the-art performance, they have a less efficient sampling procedure compared with other models such as generative adversarial networks. In the next part, we will discuss feasible ways to solve this problem.

5月2日
4:00pm - 5:00pm
地点
https://hkust.zoom.us/j/97557961147 (Passcode: 672570)
讲者/表演者
Mr. Gefei WANG
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...