The discrete unified gas-kinetic scheme (DUGKS) is a numerical method developed for multiscale flows based on the gas kinetic model equation. With the coupling of the collision and transport dynamics in the flux reconstruction, DUGKS can effectively simulate gas flows in all flow regimes, particularly continuum flows without resolving the kinetic scale. In this talk, a rigorous theoretical analysis of the asymptotic properties of DUGKS within the unified preserving (UP) framework is presented, which provides the asymptotic degree of the scheme. It is shown that the DUGKS is the second-order Lax-Wendroff scheme for the collision-less kinetic equation as the Knudsen number (ϵ) approaches to infinity; while in the continuum limit, DUGKS is consistent with the Navier-Stokes equations as the mesh size Δx=o(√ϵ) and time step Δt=o(√ϵ). Several related kinetic schemes are also analyzed for comparison. The analysis reveals that the space-time coupling is important in developing UP kinetic schemes. Numerical test of the Taylor vortex in a periodic domain confirms the theoretical analysis.

 

5月29日
11:00am - 12:00pm
地点
Room 1410 (near Lift 25/26)
讲者/表演者
Prof. Zhaoli GUO
Huazhong University of Science and Technology
主办单位
Department of Mathematics
联系方法
付款详情
对象
Faculty and staff, General public, PG students, UG students
语言
英语
其他活动
3月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...