The cluster algebras A are a class of commutative algebras equipped with a distinguished family of generators called cluster variables. The upper cluster algebras U is the intersection of Laurent polynomial rings associated with all clusters. By Laurent phenomenon, A⊂U as a subalgebra, but in general they are not equal. For a finite-dimensional simply-connected connected simple Lie group G over C and a connected marked surface Σ, we can associate a cluster algebra AG,Σ.



 



In this seminar, we introduce a recent work by Ishibashi–Oya–Shen that the cluster algebra AG,Σ coincides with its upper cluster algebra UG,Σ. The main tool is AG,Σ×, the moduli space of decorated twisted G-local systems on Σ, introduced by Fock–Goncharov, and Wilson lines introduced by Ishibashi– Oya. The proof is based on the fact that the function ring O(AG,Σ×) is generated by matrix coefficients of Wilson lines.

5月6日
4:00pm - 5:00pm
地點
https://hkust.zoom.us/j/93230862751 (Passcode: 159348)
講者/表演者
Mr. Kailong GAO
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...