The cluster algebras A are a class of commutative algebras equipped with a distinguished family of generators called cluster variables. The upper cluster algebras U is the intersection of Laurent polynomial rings associated with all clusters. By Laurent phenomenon, A⊂U as a subalgebra, but in general they are not equal. For a finite-dimensional simply-connected connected simple Lie group G over C and a connected marked surface Σ, we can associate a cluster algebra AG,Σ.



 



In this seminar, we introduce a recent work by Ishibashi–Oya–Shen that the cluster algebra AG,Σ coincides with its upper cluster algebra UG,Σ. The main tool is AG,Σ×, the moduli space of decorated twisted G-local systems on Σ, introduced by Fock–Goncharov, and Wilson lines introduced by Ishibashi– Oya. The proof is based on the fact that the function ring O(AG,Σ×) is generated by matrix coefficients of Wilson lines.

5月6日
4:00pm - 5:00pm
地点
https://hkust.zoom.us/j/93230862751 (Passcode: 159348)
讲者/表演者
Mr. Kailong GAO
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
7月14日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...