The cluster algebras A are a class of commutative algebras equipped with a distinguished family of generators called cluster variables. The upper cluster algebras U is the intersection of Laurent polynomial rings associated with all clusters. By Laurent phenomenon, A⊂U as a subalgebra, but in general they are not equal. For a finite-dimensional simply-connected connected simple Lie group G over C and a connected marked surface Σ, we can associate a cluster algebra AG,Σ.



 



In this seminar, we introduce a recent work by Ishibashi–Oya–Shen that the cluster algebra AG,Σ coincides with its upper cluster algebra UG,Σ. The main tool is AG,Σ×, the moduli space of decorated twisted G-local systems on Σ, introduced by Fock–Goncharov, and Wilson lines introduced by Ishibashi– Oya. The proof is based on the fact that the function ring O(AG,Σ×) is generated by matrix coefficients of Wilson lines.

6 May 2022
4:00pm - 5:00pm
Where
https://hkust.zoom.us/j/93230862751 (Passcode: 159348)
Speakers/Performers
Mr. Kailong GAO
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...