The cluster algebras A are a class of commutative algebras equipped with a distinguished family of generators called cluster variables. The upper cluster algebras U is the intersection of Laurent polynomial rings associated with all clusters. By Laurent phenomenon, A⊂U as a subalgebra, but in general they are not equal. For a finite-dimensional simply-connected connected simple Lie group G over C and a connected marked surface Σ, we can associate a cluster algebra AG,Σ.



 



In this seminar, we introduce a recent work by Ishibashi–Oya–Shen that the cluster algebra AG,Σ coincides with its upper cluster algebra UG,Σ. The main tool is AG,Σ×, the moduli space of decorated twisted G-local systems on Σ, introduced by Fock–Goncharov, and Wilson lines introduced by Ishibashi– Oya. The proof is based on the fact that the function ring O(AG,Σ×) is generated by matrix coefficients of Wilson lines.

6 May 2022
4:00pm - 5:00pm
Where
https://hkust.zoom.us/j/93230862751 (Passcode: 159348)
Speakers/Performers
Mr. Kailong GAO
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...
10 Oct 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...