In the Euclidean setting, the proximal gradient method and its accelerated variants are a class of efficient algorithms for optimization problems with decomposable objective. In this paper, we develop a Riemannian proximal gradient method (RPG) and its accelerated variant (ARPG) for similar problems but constrained on a manifold. The global convergence of RPG has been established under mild assumptions, and the O(1/k) is also derived for RPG based on the notion of retraction convexity. If assuming the objective function obeys the Rimannian Kurdyka-Lojasiewicz (KL) property, it is further shown that the sequence generated by RPG converges to a single stationary point. As in the Euclidean setting, local convergence rate can be established if the objective function satisfies the Riemannian KL property with an exponent. Moreover, we have shown that the restriction of a semialgebraic function onto the Stiefel manifold satisfies the Riemannian KL property, which covers for example the well-known sparse PCA problem. Numerical experiments on random and synthetic data are conducted to test the performance of the proposed RPG and ARPG.  (Joint work with Wen Huang from Xiamen University).

4月29日
1:30pm - 2:30pm
地點
https://hkust.zoom.us/j/93425301476 (Passcode: 101365)
講者/表演者
Prof. Ke WEI
School of Data Science, Fudan University
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...