In the Euclidean setting, the proximal gradient method and its accelerated variants are a class of efficient algorithms for optimization problems with decomposable objective. In this paper, we develop a Riemannian proximal gradient method (RPG) and its accelerated variant (ARPG) for similar problems but constrained on a manifold. The global convergence of RPG has been established under mild assumptions, and the O(1/k) is also derived for RPG based on the notion of retraction convexity. If assuming the objective function obeys the Rimannian Kurdyka-Lojasiewicz (KL) property, it is further shown that the sequence generated by RPG converges to a single stationary point. As in the Euclidean setting, local convergence rate can be established if the objective function satisfies the Riemannian KL property with an exponent. Moreover, we have shown that the restriction of a semialgebraic function onto the Stiefel manifold satisfies the Riemannian KL property, which covers for example the well-known sparse PCA problem. Numerical experiments on random and synthetic data are conducted to test the performance of the proposed RPG and ARPG.  (Joint work with Wen Huang from Xiamen University).

4月29日
1:30pm - 2:30pm
地点
https://hkust.zoom.us/j/93425301476 (Passcode: 101365)
讲者/表演者
Prof. Ke WEI
School of Data Science, Fudan University
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
5月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...
5月13日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture – Expanding the Borders of Chemical Reactivity
Abstract The lecture will demonstrate how it has been possible to expand the borders of cycloadditions beyond the “classical types of cycloadditions” applying organocatalytic activation principles....