In the Euclidean setting, the proximal gradient method and its accelerated variants are a class of efficient algorithms for optimization problems with decomposable objective. In this paper, we develop a Riemannian proximal gradient method (RPG) and its accelerated variant (ARPG) for similar problems but constrained on a manifold. The global convergence of RPG has been established under mild assumptions, and the O(1/k) is also derived for RPG based on the notion of retraction convexity. If assuming the objective function obeys the Rimannian Kurdyka-Lojasiewicz (KL) property, it is further shown that the sequence generated by RPG converges to a single stationary point. As in the Euclidean setting, local convergence rate can be established if the objective function satisfies the Riemannian KL property with an exponent. Moreover, we have shown that the restriction of a semialgebraic function onto the Stiefel manifold satisfies the Riemannian KL property, which covers for example the well-known sparse PCA problem. Numerical experiments on random and synthetic data are conducted to test the performance of the proposed RPG and ARPG.  (Joint work with Wen Huang from Xiamen University).

29 Apr 2022
1:30pm - 2:30pm
Where
https://hkust.zoom.us/j/93425301476 (Passcode: 101365)
Speakers/Performers
Prof. Ke WEI
School of Data Science, Fudan University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...