With rapid development of wireless communication technologies, such as global position system, location-based social networks (LBSNs), like Foursquare, Facebook, etc., have attracted millions of users to share their social friendship and locations via check-in. As one of the most important tasks in LBSNs, POI recommendation aims to mining user’s preference on locations and to provide recommendations to users based on the plenty of check-in information. In this work, we propose to use tensor factorization to handle this problem, a three-mode tensor is used to model all user’s check-in behavior, then CP decomposition is applied to tensor factorization and to recovery the original tensor. We conduct some experiment on a large-scale real-word LBSNs. I will also show our future work on POI recommendation.
5月18日
2:30pm - 3:30pm
地點
http://hkust.zoom.us/j/445635443
講者/表演者
Ms. Yiyuan LIU
HKUST
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...