With rapid development of wireless communication technologies, such as global position system, location-based social networks (LBSNs), like Foursquare, Facebook, etc., have attracted millions of users to share their social friendship and locations via check-in. As one of the most important tasks in LBSNs, POI recommendation aims to mining user’s preference on locations and to provide recommendations to users based on the plenty of check-in information. In this work, we propose to use tensor factorization to handle this problem, a three-mode tensor is used to model all user’s check-in behavior, then CP decomposition is applied to tensor factorization and to recovery the original tensor. We conduct some experiment on a large-scale real-word LBSNs. I will also show our future work on POI recommendation.
18 May 2020
2:30pm - 3:30pm
Where
http://hkust.zoom.us/j/445635443
Speakers/Performers
Ms. Yiyuan LIU
HKUST
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...