With rapid development of wireless communication technologies, such as global position system, location-based social networks (LBSNs), like Foursquare, Facebook, etc., have attracted millions of users to share their social friendship and locations via check-in. As one of the most important tasks in LBSNs, POI recommendation aims to mining user’s preference on locations and to provide recommendations to users based on the plenty of check-in information. In this work, we propose to use tensor factorization to handle this problem, a three-mode tensor is used to model all user’s check-in behavior, then CP decomposition is applied to tensor factorization and to recovery the original tensor. We conduct some experiment on a large-scale real-word LBSNs. I will also show our future work on POI recommendation.
5月18日
2:30pm - 3:30pm
地点
http://hkust.zoom.us/j/445635443
讲者/表演者
Ms. Yiyuan LIU
HKUST
主办单位
Department of Mathematics
联系方法
mathseminar@ust.hk
付款详情
对象
Alumni, Faculty and Staff, PG Students, UG Students
语言
英语
其他活动
3月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...