Latent variable models lay the statistical foundation for data science problems with unstructured, incomplete and heterogeneous information. Spectral methods extract low-dimensional geometric structures for downstream tasks in a computationally efficient way. Despite their conceptual simplicity and wide applicability, theoretical understanding is lagging far behind and that hinders development of principled approaches. In this talk, I will first talk about the bias and variance of PCA, and apply the results to distributed estimation of principal eigenspaces. Then I will present an $ell_p$ theory of eigenvector analysis that yields optimal recovery guarantees for spectral methods in many challenging problems. The results find applications in dimensionality reduction, mixture models, network analysis, recommendation systems, ranking and beyond.
3月20日
9:30am - 10:30am
地點
https://hkust.zoom.com.cn/j/5616960008
講者/表演者
Dr. Kaizheng WANG
Princeton University
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...