Latent variable models lay the statistical foundation for data science problems with unstructured, incomplete and heterogeneous information. Spectral methods extract low-dimensional geometric structures for downstream tasks in a computationally efficient way. Despite their conceptual simplicity and wide applicability, theoretical understanding is lagging far behind and that hinders development of principled approaches. In this talk, I will first talk about the bias and variance of PCA, and apply the results to distributed estimation of principal eigenspaces. Then I will present an $ell_p$ theory of eigenvector analysis that yields optimal recovery guarantees for spectral methods in many challenging problems. The results find applications in dimensionality reduction, mixture models, network analysis, recommendation systems, ranking and beyond.
3月20日
9:30am - 10:30am
地点
https://hkust.zoom.com.cn/j/5616960008
讲者/表演者
Dr. Kaizheng WANG
Princeton University
主办单位
Department of Mathematics
联系方法
mathseminar@ust.hk
付款详情
对象
Alumni, Faculty and Staff, PG Students, UG Students
语言
英语
其他活动
7月14日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...