The invariant distribution, which is characterized by the stationary Fokker-Planck equation, is an important object in the study of randomly perturbed dynamical systems.  Traditional numerical methods for computing the invariant distribution based on the Fokker-Planck equation, such as finite difference or finite element methods, are limited to low-dimensional systems due to the curse of dimensionality.  In this work, we propose a deep learning based method to compute the generalized potential, i.e. the negative logarithm of the invariant distribution multiplied by the noise.  The idea of the method is to learn a decomposition of the force field, as specified by the Fodder-Planck equation, from the trajectory data.  The potential component of the decomposition gives the generalized potential.  The method can deal with high-dimensional systems, possibly with partially known dynamics.  Using the generalized potential also allows us to deal with systems at low temperatures, where the invariant distribution becomes singular around the metastable states.  These advantages make it an efficient method to analyze invariant distributions for practical dynamical systems.  The effectiveness of the proposed method is demonstrated by numerical examples.

7月11日
10:00am - 11:00am
地点
Room 2463 (Lifts 25/26)
讲者/表演者
Prof. Weiqing REN
National University of Singapore
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...