Best subset selection aims to find a small subset of predictors that lead to the most desirable and pre-defined prediction accuracy in a linear regression model. It is not only the most fundamental problem in regression analysis, but also has far reaching applications in every facet of research including computer science and medicine. We introduce a polynomial algorithm which under mild conditions, solves the problem. This algorithm exploits the idea of sequencing and splicing to reach the stable solution in finite steps when the sparsity level of the model is fixed but unknown. We define a novel information criterion that the algorithm uses to select the true sparsity level with a high probability. We show when the algorithm produces a stable optimal solution that is the oracle estimator of the true parameters with probability one. We also demonstrate the power of the algorithm in several numerical studies.

5月6日
10:00am - 11:00am
地点
https://hkust.zoom.us/j/6827297694 (Passcode: 7436)
讲者/表演者
Prof. Xueqin WANG
University of Science and Technology of China
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
7月14日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...