Best subset selection aims to find a small subset of predictors that lead to the most desirable and pre-defined prediction accuracy in a linear regression model. It is not only the most fundamental problem in regression analysis, but also has far reaching applications in every facet of research including computer science and medicine. We introduce a polynomial algorithm which under mild conditions, solves the problem. This algorithm exploits the idea of sequencing and splicing to reach the stable solution in finite steps when the sparsity level of the model is fixed but unknown. We define a novel information criterion that the algorithm uses to select the true sparsity level with a high probability. We show when the algorithm produces a stable optimal solution that is the oracle estimator of the true parameters with probability one. We also demonstrate the power of the algorithm in several numerical studies.

6 May 2022
10:00am - 11:00am
Where
https://hkust.zoom.us/j/6827297694 (Passcode: 7436)
Speakers/Performers
Prof. Xueqin WANG
University of Science and Technology of China
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...