res

In recent years, machine learning (ML) has emerged as a promising tool for dealing with the difficulty of representing high dimensional functions. This gives us an unprecedented opportunity to revisit theoretical foundations of various scientific fields and solve problems that were too complicated for conventional approaches to address. Here we identify a list of such problems in the context of multi-scale molecular and materials modeling and review ML-based strategies that boost simulations with ab initio accuracy to much larger scales than conventional approaches. Using examples at scales of many-electron Schrödinger equation, density functional theory, and molecular dynamics, we present two equally important principles: 1) ML-based models should respect important physical constraints in a faithful and adaptive way; 2) to build truly reliable models, efficient algorithms are needed to explore relevant physical space and construct optimal training data sets. Finally, we present our efforts on developing related software packages and high-performance computing schemes, which have now been widely used worldwide by experts and practitioners in the molecular and materials simulation community.

12月2日
3:00pm - 4:30pm
地点
https://hkust.zoom.us/j/98248767613 (Passcode: math6380p)
讲者/表演者
Dr. Linfeng ZHANG
Beijing Institute of Big Data Research and Princeton University
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
1月6日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...