res

In recent years, machine learning (ML) has emerged as a promising tool for dealing with the difficulty of representing high dimensional functions. This gives us an unprecedented opportunity to revisit theoretical foundations of various scientific fields and solve problems that were too complicated for conventional approaches to address. Here we identify a list of such problems in the context of multi-scale molecular and materials modeling and review ML-based strategies that boost simulations with ab initio accuracy to much larger scales than conventional approaches. Using examples at scales of many-electron Schrödinger equation, density functional theory, and molecular dynamics, we present two equally important principles: 1) ML-based models should respect important physical constraints in a faithful and adaptive way; 2) to build truly reliable models, efficient algorithms are needed to explore relevant physical space and construct optimal training data sets. Finally, we present our efforts on developing related software packages and high-performance computing schemes, which have now been widely used worldwide by experts and practitioners in the molecular and materials simulation community.

2 Dec 2020
3:00pm - 4:30pm
Where
https://hkust.zoom.us/j/98248767613 (Passcode: math6380p)
Speakers/Performers
Dr. Linfeng ZHANG
Beijing Institute of Big Data Research and Princeton University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...