In the Gaussian sequence model , we study the likelihood ratio test (LRT) for testing versus , where , and  is a closed convex set in . In particular, we show that under the null hypothesis, normal approximation holds for the log-likelihood ratio statistic for a general pair , in the high dimensional regime where the estimation error of the associated least squares estimator diverges in an appropriate sense. The normal approximation further leads to a precise characterization of the power behavior of the LRT in the high dimensional regime. These characterizations show that the power behavior of the LRT is in general non-uniform with respect to the Euclidean metric, and illustrate the conservative nature of existing minimax optimality and sub-optimality results for the LRT. A variety of examples, including testing in the orthant/circular cone, isotonic regression, Lasso, and testing parametric assumptions versus shape-constrained alternatives, are worked out to demonstrate the versatility of the developed theory.



 



This talk is based on joint work with Yandi Shen(UW, Chicago) and Bodhisattva Sen(Columbia).

9月17日
10:00am - 11:00am
地点
https://hkust.zoom.us/j/94328358340 (Passcode: 690595)
讲者/表演者
Prof. Qiyang HAN
Rutgers University
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
10月10日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...