Let G be an abelian group. Suppose m 2 and |G| = v. Let D1, D2, · · · , Dm be mutually disjoint k-subsets of G. {D1, D2, · · · , Dm} is called a (v, m, k, λ)-strong external difference family (SEDF) in G if



 



Dj(t≠jDt-1=λ(G-1G) for each 1≤j≤m.



The study of SEDFs is motivated by the so called algebraic manipulation detection (AMD) codes, which can be regarded as a variation of classical authentication codes. Moreover, further cryptographic applications of AMD codes have been discovered later.



 



So far, only one nontrivial example exists for m ≥ 3. In this talk, I will present some recent non-existence results on abelian SEDF for m ≥ 3. Namely, we will show that if v is a product of three (not necessarily) primes, there is no SEDF unless G is p-elementary with prime p 3 × 1012 [1]. We also consider the case λ = pq where p, q are primes. It can be shown that for any fixed q, no SEDF exists if p is sufficiently large.

16 Dec 2021
4:00pm - 5:00pm
Where
https://hkust.zoom.ust/j/97394233372 (Passcode: 857784)
Speakers/Performers
Prof. Ka Hin LEUNG
National University of Singapore
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...