In this mini-series of talks, we will survey some recent advances in utilizing advances in machine learning to help tackle challenging tasks in scientific computing, focusing on numerical methods for solving high dimensional partial differential equations and high dimensional sampling problems. In particular, we will discuss theoretical understandings and guarantees for such methods and new challenges arise from the perspective of numerical analysis.



 



In the third lecture, we will discuss solution theory and neural network approximations to high dimensional elliptic partial differential equations. To overcome the curse of dimensionality, we identity appropriate function spaces for the solutions to high dimensional PDEs, in particular in terms of Barron type space, suitable for neural network approximations. We will discuss solution theories for elliptic equations and eigenvalue problems.

26 Jul 2023
11:00am - 12:00pm
Where
Room 2464 (Lifts 25/26)
Speakers/Performers
Prof. Jianfeng LU
Duke University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...