We present a pathwise approach to continuous-time finance based on causal functional calculus. Our framework does not rely on any probabilistic concept. We introduce a definition of continuous-time self-financing portfolios, which does not rely on any integration concept and show that the value of a self-financing portfolio belongs to a class of nonanticipative functionals, which are pathwise analogs of martingales. We show that if the set of market scenarios is generic in the sense of being stable under certain operations, such self-financing strategies do not give rise to arbitrage. We then consider the problem of hedging a path-dependent payoff across a generic set of scenarios. Applying the transition principle of Rufus Isaacs in differential games, we obtain a pathwise dynamic programming principle for the superhedging cost. We show that the superhedging cost is characterized as the solution of a path-dependent equation. For the Asian option, we obtain an explicit solution.

17 Feb 2023
5:00pm - 6:00pm
Where
https://cuhk.zoom.us/j/92206896799?pwd=RzUySEVzRlVMd3FFMDlQd3lqbjVGdz09
Speakers/Performers
Prof. Rama Cont
Oxford University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...