We present an energy formulation of continuum electro-elastic and magneto- electro-elastic materials. Based on the principle of minimum free energy, we propose a form of total free energy of the system in three dimensions, and then systematically derive the theories for a hierarchy of materials including dielectric elastomers, piezoelectric ceramics, ferroelectrics, flexoelectric materials, magnetic elastomers, magneto-electric materials, piezo-electric-magnetic materials among others. The effects of mechanical, electrical and magnetic boundary devices, external charges, polarizations, and magnetization are taken into account in formulating the free energy. The linear and nonlinear boundary value problems governing these materials are explicitly derived as the Euler-Lagrange equations of the principle of minimum free energy. Finally, we illustrate the applications of the formulation in soft matter physics, concerning (1) electrohydrodynamics (EHD), (2) strain-mediated magnetoelectricity, and (3) effective piezoelectricity of electrets.

13 Jun 2023
10am - 11am
Where
Room 4502 (4/F, Lift # 25/26)
Speakers/Performers
Prof. Liping LIU
Rutgers University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...
9 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture – Deconstructive Homologation of Ethers and Amides
Abstract Preparation of diverse homologs from lead compounds has been a common and important practice in medicinal chemistry. However, homologation of many functional groups, such as ethers an...