Computational model representing real-world systems are always affected by uncertainties; these are related either to assumptions and simplification in the physical models or to variability in the operating scenarios.  Uncertainty Quantification (UQ) is, therefore, an important element of model validation, providing formal assessment of the sensitivity of the predictions. In this talk I will discuss two different UQ methodologies. The first approach is based on the interpolative decomposition technique which relies on matrix compression to construct a bi-fidelity sampling strategy.  In spite of the promising results of this technique, difficulties are observed in the presence of strongly non-linear or discontinuous system responses. A second approach is devised using a Pade-Legendre functional expansion. The challenges of combining the two approaches in the presence of a large number of parameters are discussed as ongoing work. 

3 Feb 2023
3:00pm - 4:00pm
Where
Lecture Theater F (Lifts 25/26)
Speakers/Performers
Prof. Gianluca IACCARINO
Stanford University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...