Computational model representing real-world systems are always affected by uncertainties; these are related either to assumptions and simplification in the physical models or to variability in the operating scenarios.  Uncertainty Quantification (UQ) is, therefore, an important element of model validation, providing formal assessment of the sensitivity of the predictions. In this talk I will discuss two different UQ methodologies. The first approach is based on the interpolative decomposition technique which relies on matrix compression to construct a bi-fidelity sampling strategy.  In spite of the promising results of this technique, difficulties are observed in the presence of strongly non-linear or discontinuous system responses. A second approach is devised using a Pade-Legendre functional expansion. The challenges of combining the two approaches in the presence of a large number of parameters are discussed as ongoing work. 

3 Feb 2023
3:00pm - 4:00pm
Where
Lecture Theater F (Lifts 25/26)
Speakers/Performers
Prof. Gianluca IACCARINO
Stanford University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
20 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...