In this talk, I will present our recent work on mathematical models, asymptotic analysis and numerical simulation for degenerate dipolar quantum gas. As preparatory steps, I begin with the three-dimensional Gross-Pitaevskii equation with a long-range dipolar interaction potential which is used to model the degenerate dipolar quantum gas and reformulate it as a Gross-Pitaevskii-Poisson type system by decoupling the two-body dipolar interaction potential

which is highly singular into short-range (or local) and long-range interactions (or repulsive and attractive interactions). Based on this new mathematical formulation, we prove rigorously existence and uniqueness as well as nonexistence of the ground states, and discuss the existence of global weak solution and finite time blowup of the dynamics in different parameter regimes of dipolar quantum gas. In addition, a backward Euler sine pseudospectral method is presented

for computing the ground states and a time-splitting sine pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to the adoption of new mathematical formulation, our new numerical methods avoid evaluating integrals with high singularity and thus they are more efficient and accurate than those numerical methods currently used in the literatures for solving the problem. In addition, new mathematical formulations in two-dimensions and one dimension for dipolar quantum gas are obtained when the external trapping potential is highly confined in one or two directions. Numerical results are presented to confirm our analytical results and demonstrate the efficiency and accuracy of our numerical methods. Some interesting physical phenomena are discussed too.

Date

29 May 2023
4:30pm - 5:30pm
Where
Lecture Theatre F (near Lift 25 & 26)
Speakers/Performers
Prof. Weizhu Bao
National University of Singapore
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Faculty and staff, General public, PG students, UG students
Language(s)
English
Other Events
26 Apr 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Molecular Basis of Wnt Biogenesis, Secretion and Ligand Specific Signaling
Abstract Wnt signaling is essential to regulate embryonic development and adult tissue homeostasis. Aberrant Wnt signaling is associated with cancers. The ER-resident membrane-bound O-acyltransfera...
18 Apr 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Understanding the Roles of Transposable Elements in the Human Genome
Abstract Transposable elements (TEs) have expanded the binding repertoire of many transcription factors and, through this process, have been co-opted in different transcriptional networks. In this ...