Geometric representation theory contains various realizations of representation some infinite dimensional Lie algebras  in geometric ways. In this talk we will introduce a geometric construction of representation of Hecke algebra realizing as action on K-theory groups of moduli spaces of stable bundles on smooth surfaces given by Andrei Negut, which is a generalization of Nakajima’s results on Hilbert scheme of n points on affine plane. In his work, Negut introduces a way to understand the operators on K-theory groups without using equivariant settings.

6 May 2022
3:00pm - 4:00pm
Where
https://hkust.zoom.us/j/99010866815 (Passcode: 220506)
Speakers/Performers
Mr. Zhongyi SHI
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...