As single-cell technologies evolved over years, diverse single-cell atlas datasets have been rapidly accumulated. Integrative analyses harmonizing such datasets provide opportunities for gaining deep biological insights. In this talk, we present a computational approach developed for fast and accurate integration of large-scale single-cell atlases. Our method incorporates generative adversarial networks and auto-encoder structures into a unified framework. Through integration of numerous datasets, we show that our method outperforms other state-of-the-art methods in terms of scalability and accuracy.

4 May 2022
4:00pm - 5:00pm
Where
https://hkust.zoom.us/j/92441893149 (Passcode: 538242)
Speakers/Performers
Miss Jia ZHAO
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
14 Jul 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...