One of the important notions of quasi-local mass in general relativity is the one proposed by Hawking in 1968, nowadays commonly known as the Hawking mass. In this talk, we study the L2-gradient flow of the Hawking mass functional on a closed surface in the Riemannian Schwarzschild 3-manifold. We begin by a brief discussion of the higher order estimates, to see that the uniform curvature bounds hold under the absence of curvature concentration. Then, we carry out a blowup analysis to determine the required condition in order to eliminate such concentration phenomenon. We focus on the comparison between our work and the Willmore flow on a closed surface in R3. Finally, we conclude by establishing the longtime existence of the solution.

18 Jun 2021
10:00am - 11:00am
Where
https://hkust.zoom.us/j/99345221674 (Passcode: 605764)
Speakers/Performers
Mr. Nicholas Cheng Hoong CHIN
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
14 Jul 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...