In this era of big data, quantifying relationships between different components of a complex system is an appealing and challenging problem. Gaussian graphical model incorporates an undirected graph whose edge describes the conditional dependence among variables, and it has a wide variety of applications in biological networks, social networks, and financial data. Precision matrix (also known as inverse covariance, or concentration matrix) encode the partial covariances between pairs of variables given others, whose nonzero entries correspond to edges in graphical model. We provide a new estimator of precision matrix in a pair-by-pair manner by regressing a pair of variables on the remaining ones each time. The minorize-maximization algorithm is applied to maximize log-likelihood function for parameter estimation. This procedure could be computationally efficient by parallel computing different pairs. More importantly, the core strength of this method is that the uncertainty of each edge can be quantified.

5 May 2022
2:00pm - 3:00pm
Where
https://hkust.zoom.us/j/99306493425 (Passcode: hkust)
Speakers/Performers
Miss Yueqi QIAN
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
10 Oct 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
14 Jul 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...