High dimensional partial differential equations (PDE) are challenging to compute by traditional mesh-based methods especially when their solutions have large gradients or concentrations at unknown locations. Mesh-free methods are more appealing; however, they remain slow and expensive when a long time and resolved computation is necessary. In this talk, we present DeepParticle, an integrated deep learning (DL), optimal transport (OT), and interacting particle (IP) approach through a case study of Fisher-Kolmogorov-Petrovsky-Piskunov front speeds in incompressible flows. PDE analysis reduces the problem to the computation of the principal eigenvalue of an advection-diffusion operator. Stochastic representation via the Feynman-Kac formula makes possible a genetic interacting particle algorithm that evolves particle distribution to a large time-invariant measure from which the front speed is extracted. The invariant measure is parameterized by a physical parameter (the Peclet number). We learn this family of invariant measures by training a physically parameterized deep neural network on affordable data from IP computation at moderate Peclet numbers, then predict at a larger Peclet number when IP computation is expensive. Our methodology extends to a more general context of deep learning stochastic particle dynamics. For instance, we can learn and generate aggregation patterns in Keller-Segel chemotaxis systems.

23 Jun 2023
3:00pm - 4:00pm
Where
Room 4503 (Lifts 25/26)
Speakers/Performers
Prof. Zhiwen ZHANG
The University of Hong Kong
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...