As the advances in imaging modalities in which the image reconstruction problems are mathematically inverse problems, many new kinds of inverse problems have emerged and trends to being high dimensional but with low-cost data acquisition. In order to efficiently and stably solve the under-determined and ill-conditioned inverse problems in high-dimensional medical imaging and compressed sensing, we established accurate statistical models for data fitting and images priors such as shape priors, statistical priors by generative models. In this presentation, I will introduce some of these methods and our recent results for image reconstruction, such as 4DCBCT reconstruction, joint image reconstruction and indirect registration, phase retrieval and some other nonlinear inverse problems.

8 Dec 2022
9:00am - 10:00am
Where
https://hkust.zoom.us/j/91499516475 (Passcode: 436311)
Speakers/Performers
Prof. Jiulong LIU
Academy of Mathematics and Systems Science, Chinese Academy of Sciences
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
20 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...