In this mini-series of talks, we will survey some recent advances in utilizing advances in machine learning to help tackle challenging tasks in scientific computing, focusing on numerical methods for solving high dimensional partial differential equations and high dimensional sampling problems. In particular, we will discuss theoretical understandings and guarantees for such methods and new challenges arise from the perspective of numerical analysis.



 



In the second lecture, we will discuss numerical approach to solve high dimensional Hamilton-Jacobi-Bellman (HJB) type partial differential equations (PDEs). The HJB PDEs, reformulated as optimal control problems, are tackled by the actor-critic framework inspired by reinforcement learning, based on neural network parametrization of the value and control functions. Within the actor-critic framework, we employ a policy gradient approach to improve the control, while for the value function, we derive a variance reduced least-squares temporal difference method using stochastic calculus. We will also discuss convergence analysis for the actor-critic method, in particular the policy gradient method for solving stochastic optimal control.

21 Jul 2023
10am - 11am
Where
Room 2302 (Lifts 17/18)
Speakers/Performers
Prof. Jianfeng LU
Duke University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...
13 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture – Expanding the Borders of Chemical Reactivity
Abstract The lecture will demonstrate how it has been possible to expand the borders of cycloadditions beyond the “classical types of cycloadditions” applying organocatalytic activation principles....