This talk covers several recent works that share a common theme of optimizing maps among a network of objects or domains. In this context, maps take the form of matrices or neural networks. A network of maps differs from standard networks and graphs in the sense that there are regularization constraints derived from map composition. Such constraints offer powerful tools for map denoising and to propagate and aggregate information through the network. We will discuss algebraic and combinatorial theories of these constraints and applications in geometry reconstruction,3D understanding, and scene synthesis. 

27 Sep 2021
10:30am - 11:30am
Where
https://hkust.zoom.us/j/5616960008 (Passcode: hkust)
Speakers/Performers
Prof. Qixing HUANG
Department of Computer Science, The University of Texas at Austin
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...