In this talk, we discuss the Dirichlet eigenvalue problem associated to the infinity Laplacian in metric spaces. We provide a direct PDE approach to find the principal eigenvalue and eigenfunctions for a bounded domain in a proper geodesic space with no measure structure. We give an appropriate notion of solutions to the infinity eigenvalue problem and show the existence of solutions by adapting Perron's method. Our method is different from the standard limit process, introduced by Juutinen-Lindqvist-Manfredi (ARMA,1999), via the variational eigenvalue formulation for $p$-Laplacian in the Euclidean space. Several further results and concrete examples will be given in the case of finite metric graphs. This talk is based on joint work with Ayato Mitsuishi at Fukuoka University.

12 Nov 2021
9:00am - 10:00am
Where
https://hkust.zoom.us/j/98685800264 (Passcode: 440023)
Speakers/Performers
Prof. Qing LIU
Fukuoka University, Japan
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...