In this talk, we discuss the Dirichlet eigenvalue problem associated to the infinity Laplacian in metric spaces. We provide a direct PDE approach to find the principal eigenvalue and eigenfunctions for a bounded domain in a proper geodesic space with no measure structure. We give an appropriate notion of solutions to the infinity eigenvalue problem and show the existence of solutions by adapting Perron's method. Our method is different from the standard limit process, introduced by Juutinen-Lindqvist-Manfredi (ARMA,1999), via the variational eigenvalue formulation for $p$-Laplacian in the Euclidean space. Several further results and concrete examples will be given in the case of finite metric graphs. This talk is based on joint work with Ayato Mitsuishi at Fukuoka University.

12 Nov 2021
9am - 10am
Where
https://hkust.zoom.us/j/98685800264 (Passcode: 440023)
Speakers/Performers
Prof. Qing LIU
Fukuoka University, Japan
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
26 Apr 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Molecular Basis of Wnt Biogenesis, Secretion and Ligand Specific Signaling
Abstract Wnt signaling is essential to regulate embryonic development and adult tissue homeostasis. Aberrant Wnt signaling is associated with cancers. The ER-resident membrane-bound O-acyltransfera...
18 Apr 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Understanding the Roles of Transposable Elements in the Human Genome
Abstract Transposable elements (TEs) have expanded the binding repertoire of many transcription factors and, through this process, have been co-opted in different transcriptional networks. In this ...