Recently, Jeroen Hekking developed the derived blow-up theory of closed embedding of derived schemes, which generalize the theory of Rydh and Khan of the regular embeddings. We study Hekking's theory when two derived schemes are both quasi-smooth, and observe surprisingly great property in the birational geometry, enumerative geometry and derived category of coherent sheaves. We apply this theory to two nested quiver varieties, and prove that after blowing up the diagonal, they are isomorphic to a quadruple moduli space which Negut first found for the Jordan quiver.

20 Mar 2023
4:00pm - 5:00pm
Where
Room 3598 (Lifts 27/28)
Speakers/Performers
Dr. Yu ZHAO
IPMU, University of Tokyo, Japan
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...