Functional-coefficient models with a periodic component are proposed for short-term streamflow forecasting. Traditionally, analyses are conducted for anomaly data after removing an annual pattern or detrending the data after data differencing. Alternatively, periodic models establish separate models for individual seasons. However, the setting of periodic models cannot guarantee the smoothness in model coefficients which is necessary when the time scale is small (for example, daily). In this talk, we propose the use of functional-coefficient models with a periodic component, which extend the periodic regression for short-term forecasting. Unlike the traditional functional-coefficient models which extend the threshold regression model, our functional-coefficient model with a periodic component enjoys an invariance property under data differencing. As case studies, the models are applied to Australian streamflows. The proposed idea can be applied to statistical trend analysis which considers data dependence, and to regression for canopy temperature prediction using ambient variables.

17 May 2023
3:00pm - 4:00pm
Where
Room 1409 (Lifts 25/26)
Speakers/Performers
Prof. Quanxi SHAO
CSIRO data61, Australian Resources Research Centre
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
20 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...