Selection bias arises when the effects of selection of variables or models on subsequent statistical analyses are ignored, i.e., failure to take into account “double dipping” of the data when assessing statistical evidence.  Eighty years ago, the prominent statistician and mathematical economist Harold Hotelling drew attention to this issue.  In recent years, there has been a concerted effort to address the problem, giving rise to the nascent field of post-selection inference.  In this talk I will give a review focusing on several post-selection inference problems: large-scale case-control studies, canonical correlation analysis in high dimensions, and screening high-dimensional predictors of survival outcomes.

22 Oct 2021
10:30am - 11:30am
Where
Room 4472 (Lifts 25/26) or Zoom Meeting : https://hkust.zoom.us/j/246722312
Speakers/Performers
Prof. Ian W. McKeague
Columbia University & City University of Hong Hong
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...