Selection bias arises when the effects of selection of variables or models on subsequent statistical analyses are ignored, i.e., failure to take into account “double dipping” of the data when assessing statistical evidence.  Eighty years ago, the prominent statistician and mathematical economist Harold Hotelling drew attention to this issue.  In recent years, there has been a concerted effort to address the problem, giving rise to the nascent field of post-selection inference.  In this talk I will give a review focusing on several post-selection inference problems: large-scale case-control studies, canonical correlation analysis in high dimensions, and screening high-dimensional predictors of survival outcomes.

22 Oct 2021
10:30am - 11:30am
Where
Room 4472 (Lifts 25/26) or Zoom Meeting : https://hkust.zoom.us/j/246722312
Speakers/Performers
Prof. Ian W. McKeague
Columbia University & City University of Hong Hong
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...