In practice, the data collected often systematically deviate from their actual values; a typical example is the underreporting of data in social sciences, ecology and epidemiology. Therefore, direct application of traditional statistical methods to the data may lead to incorrect inferences. In this paper, we propose a new test for serial dependence or cross-dependence of stationary or periodic time series and use a block bootstrap method to mimic the distribution of the test statistics. The test shows desirable performance in simulated data with underreporting and is used to detect factors of dengue transmission and cardiovascular disease.
16 Jun 2023
2:00pm - 3:00pm

Where
Room 2463 (Lifts 25/26)
Speakers/Performers
Prof. Yingcun XIA
Department of Statistics and Applied Probability, National University of Singapore
Department of Statistics and Applied Probability, National University of Singapore
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events

24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract
Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...

22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...