Representation theory of infinite-dimensional algebras motivates the present development of quaternionic analysis. We recall the Fueter quaternionic analogue of the Cauchy integral formula and consider its generalizations. Our study extensively uses representation theory of the conformal group of quaternions. In particular, intertwining operators for tensor products of certain representations of the conformal group allow us to define quaternionic algebras of functions. Quaternionic dilogarithm, box Feynman diagram, and other relations to four-dimensional conformal field theory in physics appear naturally in our development of quaternionic analysis.

22 Mar 2023
4:30pm - 5:30pm
Where
Room 4621 (Lifts 31/32)
Speakers/Performers
Prof. Igor Frenkel
Yale University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
10 Oct 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
14 Jul 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...