The remarkable empirical performance of Generative Adversarial Networks (GANs) in generating high-quality samples have attracted enormous attention in the past few years. In this talk, we discuss how well can GANs approximate and learn high-dimensional distributions. We show that deep ReLU neural networks can transform a low-dimensional source distribution to a distribution that is arbitrarily close to a high-dimensional target distribution in Wasserstein distance. The approximation order only depends on the intrinsic dimension of the target distribution. While only finite samples are observed, we prove that GANs are consistent estimators of the data distributions under Wasserstein distance, if the generator and discriminator network architectures are properly chosen. Furthermore, the convergence rates do not depend on the high ambient dimension, but on the lower intrinsic dimension of target distribution, which implies GANs can overcome the curse of dimensionality.

21 Apr 2021
10:00am - 11:00am
Where
https://hkust.zoom.us/j/5906683526 (Passcode: 5956)
Speakers/Performers
Mr. Yunfei YANG
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...
10 Oct 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...