Bayesian aggregation has many good characteristics in both theory and practice, which is proved more stable and flexible than single model selection. However, for large models, the optimization and inference of posterior models are resource-intensive from a practical view. Thus, this work considers a general framework to perform Bayesian aggregation on over-parametrized models, especially for neural networks. In particular, rather than using explicit Gibbs distribution in conventional models, we leverage the samples from Monte Carlo Markov Chain (MCMC) process of Langevin-like dynamics with anisotropic noise and aggregate models by recalibrating training data. With different noise shape, the corresponding posterior has some virtues on over-parametrized setting. Moreover, recalibration techniques can be conducted to helps us to obtain an efficient well-calibrated model at inference time.

5 May 2021
10:00am - 11:00am
Where
https://hkust.zoom.us/j/92896643876 (Passcode: 014877)
Speakers/Performers
Mr. Hanze DONG
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...